Contrast enhancement using linear image combinations algorithm (CEULICA) for enhancing brain magnetic resonance images

نویسنده

  • Burak YILMAZ
چکیده

Abstract: Brain magnetic resonance imaging (MRI) images support important information about brain diseases for physicians. Morphological alterations in brain tissues indicate the probable existence of a disease in many cases. Proper estimation of these tissues, measuring their sizes, and analyzing their image patterns are parts of the diagnosis process. Therefore, the interpretability and perceptibility level of the MRI image is valuable for physicians. In this paper, a new image contrast enhancement algorithm based on linear combinations is presented. The proposed algorithm is focused on improving the interpretability and perceptibility of the image information. An MRI image is presented to the algorithm, which generates a set of images from this MRI image. After this step, the algorithm uses the linear combination technique for combining the image set to generate a final image. Linear combination coefficients are generated using the artificial bee colony algorithm. The algorithm is evaluated by 4 different global image enhancement evaluation techniques: contrast improvement ratio (CIR), enhancement measurement error (EME), absolute mean brightness error (AMBE), and peak-signal-to-noise ratio (PSNR). During the evaluation process, 2 case studies are performed. The first case study is performed with 3 different image sets (T1, T2, and proton density) presented to the algorithm. These sets are obtained from the Brainweb simulated MRI database. The algorithm shows the best performance on the T1 image set with 5.844 CIR, 6.217 EME, 15.045 AMBE, and 22.150 dB PSNR scores as average values. The second case study is also performed with 3 different image sets (T1-fast low-angle shot sequence, T1-magnetization-prepared rapid acquired gradient-echoes (MP-RAGE), and T2) obtained from the The Multimedia Digital Archiving System public community database. The algorithm performs best with the T1-MP-RAGE modality images with 6.983 CIR, 17.326 EME, 3.514 AMBE, and 30.157 dB PSNR scores as average values. In addition, this algorithm can be used for classification tasks with proper linear combination coefficients, for instance, segmentation of the white matter regions in brain MRI images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm

Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Generating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method

Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...

متن کامل

Brain Volume Estimation Enhancement by Morphological Image Processing Tools

Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014